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SUMMARY

An analysis is made of the influence that radiation exchanges be-

tween elements on the inside surface of a tube have on the wall and gas

temperature distributions for forced-convection flow. The wall heat

generation has a chopped sine distribution with length along the tube,

which is a distribution often encountered in nuclear-reactor channels.

The flowing gas is assumed transparent to thermal radiation and hence

does not participate directly in the radiative exchange process. Axial

heat conduction is neglected in the gas and tube wall_ and the

convective-heat-transfer coefficient and fluid properties are assumed

constant. Several numerical examples are given to illustrate the ef-

fects of eight independent parameters such as wall emissivity, Stanton

number_ and length-diameter ratio. In some instances the radiation ex-

changes reduced the peak wall temperature or caused a reduction in the

exit gas temperature because of radiation losses from the tube end

openings.

INTRODUCTION

In advanced types of powerplants it is desirable to increase the

operating temperature levels to achieve higher efficiencies. With

higher surface temperatures, heat exchange by radiation is more signifi-

cant and can become coupled with conduction and convection processes.

This report is concerned with combined radiative and convective heat

transfer for flow of a transparent gas in a tube.

The first interest in this situation was shown by Hottel (ref. i),

who derived the energy balances for combined radiation and convection

in a uniformly heated black tube. The energy balance on an element of

the tube wall resulted in a nonlinear integral equation_ while the gas

temperature was governed by a first-order linear differential equation.



In reference i, one numerical solution was obtained for a short tube by
dividing the tube length into several isothermal zones and writing a
heat balance for each region. This gave a set of nonlinear equations
that were solved for an average temperature in each zone. This analysis
was continued in reference 2 where the governing integral equation was
transformed into a differential equation by using an approximate sepa-
rable kernel. Numerical exampleswere then carried out to examine in
detail the influence of the several independent parameters. In refer-
ence 3 a uniformly heated gray tube was analyzed by using the net radia-
tion method (ref. 4, pp. 21-24) combinedwith the procedures utilized
in reference 2.

The present report extends the previous analyses to include arbi-
trary variations in wall heat flux along the tube length. The analysis
is carried out for an arbitrary axial heat flux variation and is then
specialized for a chopped sinusoidal distribution that is often encoun-
tered in nuclear-reactor passages. The gas flowing in the tube is as-
sumedtransparent to radiation so that radiant exchangesoccur only be-
tween elements of the internal tube surface that are at different tem-
peratures, and between the internal tube surface and the environment
outside each end of the tube. Wheninternal radiation exchangeswithin
the tube are appreciable, the local heat convection to the gas is no
longer equal to the local heat generation supplied to the wall but is
equal to this heating plus the net radiative gain. Throughout the analy-
sis the convective-heat-transfer coefficient between the wall and gas is
assumedconstant, and this assumption will be discussed later. The out-
side surface of the tube is assumedperfectly insulated and, hence, has
no heat exchangefrom it. The equivalent of this condition can occur
whenthe flow channel is surrounded by other channels that are similarly
heated. For example, in a reactor fuel element constructed of an array
of stacked parallel plates with flow between them, half the energy from
each plate is transferred into the channel on each side. From symmetry,
the temperature derivative is zero at the center of each plate thickness,
which corresponds to an insulated boundary condition.

In the next section the energy equations will be derived for an
arbitrary variation in wall heating with axial position. The equations
will then be reduced to a set of two simultaneous differential equations
that can be solved by standard numerical forward integration methods.

ANALYSIS

The circular tube under consideration is shownin figure I. The
heat imposed at or generated in the tube wall is supplied either by some
external meanssuch as electrical heating or by nuclear fission of fuel
contained in the wall. The heat input can vary in an arbitrary manner
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along the tube length and is given by q(X). The integrated average

heat addition is given by the definition

i/0 -- q(x)ax (i)

Each end of the tube is exposed to a reservoir or outside environ-

ment that is maintained at a given temperature. At the inlet end of the

tube this temperature is Tr,i, and at the exit it is Tr, e. The gas

flowing through the tube enters at temperature Tg,i and leaves at

Tg,e. The gas is assumed transparent to thermal radiation so that it
does not participate directly in the radiative exchange. This is a

reasonable assumption for gases such as hydrogen, oxygen, and nitrogen.

This assumption is also valid for radiating gases when the densities and

path lengths (i.e., optical thicknesses) are small so that the gaseous

radiation is small compared with the radiative exchanges between the

solid boundaries. The inside surface of the tube wall is assumed to be

diffuse and gray so that the emissivity _ is independent of wavelength

and is equal to the absorptivity. In addition, _ is assumed independent

of temperature so that it is constant throughout the tube. As will be

shown later, for long tubes the results are generally insensitive to the

value of _, so this is not a very restricting assumption. The

convective-heat-transfer coefficient between the wall and gas is assumed

constant throughout the tube. This causes an error in the thermal en-

trance length where the heat-transfer coefficient is higher than in the

fully developed region. For turbulent flow the thermal entrance lengths

for gases are fairly short_ on the order of i0 diameters, so this assump-

tion becomes less important when long tubes on the order of 50 to i00

diameters are under consideration. The variation of heat flux along the

tube length also has an influence on the heat-transfer coefficient, but

is a relatively minor effect for turbulent conditions.

Energy Balance

The energy balance is derived in the same manner as in reference 3

where a uniformly heated gray tube was considered. According to Poljak's

net radiation method (ref. 4), qo and qi are the rates of outgoing

and incoming energy for the surface resulting only from the radiative

processes. At any location along the tube wall the energy supplied to

the wall is q + qi, where q is the specified external heat addition

or heat generation in the tube wall. The energy leaving the wall because

of radiation and convection is qo + h(Tw - Tg). This gives the heat
balance

+ qi(x)= + h[Tw(x)- (2)



where the coordinate x has been nondimensionalized in terms of the

tube diameter. The outside surface of the tube is assumed perfectly

insulated and hence does not provide any additional terms in the heat
balance.

Expressions for qi and qo are needed so that these quantities

can be eliminated in terms of'the desired wall and gas temperatures.

The incoming radiation qi at a given x location is composed of radi-

ation coming from surface elements at other positions _ along the tube

and from the reservoirs at the inlet and exit ends. This gives the
relation

_Z

qi --/ %(_)K(Ix- _I)d_+ o_,iF(x)+ OTr4eF(Z- x)
(3)

The integral is the energy contribution that the outgoing radiation

qo(_) from all the other surface elements makes to the element at x.

The qo at _ has to be multiplied by the geometrical configuration

factor K(Ix - _|)d_ to give the amount of radiant energy leaving a

ring area element at _ that reaches x. This factor is given by

g

)a_=J7_ Ix- _13+
K(Ix

[ [(x - _)23}Ix - _1

+ 1]312
d_ (_)

The two other terms on the right side of equation (5) are the heat loads

coming from the inlet and outlet environments at the ends of the tube.

Each environment is represented by a black plane at the end of the tube

that assumes the radiation coming through each end opening is diffusely

and uniformly distributed over the end opening. The quantity F is the

geometrical configuration factor between a ring element of differential

length on the tube wall and the circular opening at the end of the tube;

F is based on the area of the element on the tube wall and is given by

x_ + !
F(x) =

(x2 +l)ll2- x x_0 (5)

In equation (2) the outgoing radiation qo from a surface is made

up of directly emitted radiation plus the amount of incoming radiation
that is reflected:

4
qo = _°Tw + oqi (6)
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Since the surface is opaque, the reflectivity 0 is equal to one minus
the absorptivity, which, with the gray assumption, becomes i - c. Then

4
qo = cCTw + (i - c)qi (Ga)

Since the three equations (eqs. (2), (5), and (8a)) contain four

unknowns - qo, qi, Tw, and Tg_ an additional relation is required.
This is found from a heat balance on the flowing gas. The gas is assumed

transparent to thermal radiation so it exchanges heat with the wall only

by convection. If a cylindrical control volume in the gas of diameter

D and differential length dX is considered, the convected energy

_D 2

flowing into the volume is -_-_pcpTg, while that convected out is

_D-!24._°p_g+ _ \4._op_

The energy convected to the gas from the wall is _D dX h(T w - Tg). The
energy balance on the gas is then

dTg
_-= st(m_- _g) (7)

where x = X/D and St is the Stanton number 4.h/_0Cp.

Since equations (2), (5), (6a), and (7) are to be solved for Tw

and Tg, qi, which is not of physical interest, must be eliminated first.
Substituting equation (S) into (2) gives

: %(_)+ h[_w(x)- Tg(X)] (8)

Equations (2) and (6a) can also be combined to eliminate qi:

i - 6 (9)

Equations (7), (8), and (9) then constitute a set of three equations for

three unknowns - qo, Tw_ and Tg. Before proceeding with the solution_



the equations are placed in dimensionless form:

dtg
dx st[twIXl- tgIx)] Va)

q(x) + %--(_)K(Ix- _I)d_ + t4 iF(x) + t4 eF(_ - x)
q q

- cL°(x)+_ H_w(X ) - tg(X)_
q

8a)

qo- ta_ +!-_ w c c[ H(tw -tg)- (--_I
9a)

Separable Kernel Approximation

The integral equation (8a) is complicated by the fact that the

kernel K(Ix - _I ) is not a simple algebraic function. It is shown in
references S and 6 that a good approximation for K is

K(x - _) m e -2(x-_) x > _'[ (10)

K(_ - x) _ e-2(_-x) x < J
The use of this exponential approximation provides a great simplification

since e-2(x-_) = e-2Xe 2_ is a separable function, that is, a product

of a function of x alone and a function of _ alone. This approxima-

tion is introduced into equation (Sa) to give

/0xq(x) + i %(_) e2_ d_ + e2x %(_)
._ _ _" _ e -2_ d_

%(x)4 4
+ tr,iF(x) + tr,eF(Z - x) - _

q
+ H[t (x) - tg(x>] (11>

Hence_ by using equation (i0) the x function in K can be taken out

from under the integral signs.



Reduction to differential equation. - Equation (ii) can now be sim-

plified by transforming it into a differential equation, it is first

differentiated twice to give

x fz qo(x)
1 dZq + 4 qo (_) 4e 2x q°(_) e-2_ d_ - 4

0

+ r,i 'dx2 + tr,e dx 2 _ dx 2 + H<d-_ dx2/

(12)

Equation (ii) is subtracted from this equation four times to remove the

integrals and give

I 'I+ tr,iL _x2 CF<x) + tr,eL- _x 2 - 4F(Z - X

d2tg gl
i d2qo + H{d2tw 4tw + 4t

dx 2 kdx 2 dx 2

(13)

The quantity qo is then eliminated by differentiating equation (ga)

twice and substituting into equation (13):

i I_ d2q _ 4q) + t4 [d2F(x) 4F(x)] + t 4 _d2F(Z-- x)- _F(Z- X)1r,e L _x2

2/dtw_ 2 d2tw

= 12tw_d-_- ) + 4t3w dr.2
+

Ii d2tw i d2tg glH 4t w + 4t
dx 2 e dx 2

(i_)



This is further simplified by eliminating d2tg/dX2._ Thus, equation
is differentiated to give

dx 2 - Stt_xx

and equation (7a) is substituted into this to remove

dx 2 - St - St(t w - tg

dtg/dx:

(15)

Equation (15) is used to eliminate the second derivative of tg in
equation (14) with the result:

I I_ d2q 4ql + t4 Id2F(x) ]

 *tw- 4F(Z - x) = 12twl _----] + 4t 5
w dx 2

d2tw St

+ H dx 2 _ - St(t w - tg) - 4tw + 4t (16)

Equations (16) and (7a) are a set of two simultaneous nonlinear

ordinary differential equations for tw and tg. Before solving them

numerically, an additional simplification can be made by using an ap-

proximation for F similar to the one that was made for K. It is

shown in reference 5 that F(x) could be approximated quite well by the
function

e-2X
F(x) _-- (17)2

By using this function, the quantity \dx2

can be rearranged into the final form:

4F1 = 0, and equation (16)
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2_dtw_2 dt w
+ 1_ _]+ / - t Est _dx 2

_dx2 - 4c
(18)

Boundary conditions. - Equations (7a) and (18) are to be solved

simultaneously for tg(X) and tw(X ). For a first-order equation such

as equation (Ta) one boundary condition is required - the specified gas

temperature entering the tube at x = O. This gas temperature tg(O)

is designated by tg,i.

For the second-order equation (18) the boundary conditions are de-

rived from the integral equation since the integral equation has the

boundary conditions already contained within it. One of the two condi-

tions required is found by evaluating the integral equation (ii) at

x = Z and using equation (IV) to approximate F:

f_

1 %(_) 4 e-21
q(_) + 7 _- e 2_ d_ + t r,i 7

0

%( _)
+ __e _

2

The outgoing radiation qo is eliminated by substituting equation (ga),

and the result is rearranged into the form

_t4

H_w(Z ) - tg(Z)] + _tw_(Z) -r_e2

+ (i - c)H(t w - tg)_e -2(Z-x) dx =
q

e -2Z fT.+ Ctr_ i _- (1- _) _(X) e_2(Z_x) dx (20)
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The second boundary condition for equation (18) is found by evalu-

ating the integral equation (Ii) at x = 0 and using equation (17) to

approximate F:

%(_) _- _ e-2Z %(o)q ) * _ e -2_ d_ + + tr, e _ -

0

* H_w(O ) - tg(O)_

(21)

To begin a numerical integration of equation (18), two initial conditions

are needed - tw and dtw/dx at x = O. For each trial solution a value

for tw will be guessed. This guess temporarily takes the place of the

boundary condition given by equation (20), which can only be tested after

a solution has been found. The value for dtw/dXlx=O will be obtained

by use of the condition given by equation (21). To do this the exponen-

tial approximation (eq. (17)) for F is inserted into equation (ii)
which is then differentiated once and evaluated at x = O:

qo(_)
i dq + 2 e-2_ dE - t 4

dx 0 _ r,i

I )+ t4 e_2_ = i dqo + H (22)

r,e _ dx 0 \d-_lO dx

The integral in this relation is eliminated by using the boundary condi-

tion in equation (21) to give

= Ld---X--IO - 2tw(O) - d-T o
(23)

The quantities qo(O) and dx 0 are eliminated by using equation (9a)

dtg

and its first derivative; the derivative _---0 is eliminated by using
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equation (7a). The result can then be arranged into the final form for
the initial wall temperature derivative:

dtwI = i IH(St + 2)_w(O ) - tg(O)]

This condition along with a guessedvalue for tw(O), a specified tg(O),
heat fl'_x distribution_ and other parameters provides sufficient condi-
tions to numerically integrate equations (iS) and (7a) simultaneously.
The results for each trial tw(O) are tested in the boundary condition
(eq. (20)); and, if this is not satisfied, a newvalue for tw(O) is
interpolated. The details of the numerical solution procedure for this
type of simultaneous system are discussed in reference 3.

Overall Heat Balance

In addition to having each solution satisfy the required boundary
conditions, a check on the numerical work wasmadeby determining
whether the solution was consistent with an overall heat balance. The
heat balance was derived from the following terms:

i) The heat removedfrom the tube by the heated gas, which is

_0Cp _D2-y- (_g,e - _g,i)

(2) The radiated heat leaving the tube wall that is removed through

the ends of the tube, which is

_D

(3) The heat gained by radiation into the tube from the environment

at the ends, which is
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(4) The heat flux supplied at the tube wall, which is _DL

The energy leaving the tube is equated to the incoming quantities,
and the result is placed in dimensionless form:

_ %tg,i) + -_ IF(x)

0

+ F(Z - x)]d_

4 F(x)dx + 4

= tr'i JO tr_e
F(Z - x)dx +

The approximate expression for F (eq. (17)) is substituted, and the

two integrals on the right are carried out. Then qo is substituted
from equation (ga), and the heat balance is arranged into the final
form:

H 4 (1 - e-2Z)
_Z + e _-_ tg,i + etr, i 4

+

Z
(i - e) q(x)[e_2X + e_2(Z_X)]d x = _etr4 e (i- e-2Z)

ZH i [etw4 + (i ¢)H(t w tg)][e-2X + e-2(_-X)]dx+ e _- tg,e + _ - -

(25)

Limiting Cases for Radiation or Convection Alone

In this section the two special cases are considered where either

convection or radiation becomes very small.

Pure-radiation solution. - When convection is negligible, the pure-

radiation solution can be found by following the procedure given in

reference 5 where the case for uniform heating was treated. From equa-

tion (Sa) when H _ 0 the integral equation for qo is
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q(x) %({)
q°(x) - t_,iF(x) + tr,eF(_ - x) + _ + K(Ix - _l)d_q

(26)

After qo is found, the wall temperature is obtained from equation (9a)
with H = O:

t<__% +l- q(x)
w _ _

(27)

From this relation it is noted by considering the black wall case

(c = i) that q°/_ = tw c=l; that is, qo/_ is equivalent to the black

wall temperature distribution. As shown in reference 5, the general

solution of equation (26) can be found by adding two more elementary

solutions having the following conditions: (i) Specified reservoir tem-

peratures with zero heating at the wall (q = 0) and (2) specified wall

_eating with zero reservoir temperatures. The solution for part (i) is

given in reference 5 so part (2) is considered first. In equation (26)

the reservoir temperatures are set equal to zero, and the exponential

approximation (i0) is used for K. Then the equation is differentiated

twice, and the original equation is subtracted four times. This leads

to the same result as equation (15) with H_ tr_i_ and tr, e equal to
zero:

dx 2

i _iq _ A
(28)

Equation (28) is integrated twice to give

qo q 4 II q(x)dx dx + ClX + C2 (29)q q _

The constants CI and C 2 have to be determined from the boundary

conditions obtained from the governing integral equation (ii) with the

reservoir temperatures s.nd H equal to zero. Values for C I and C 2
will be determined later when a specific q(x) is considered.
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To obtain the wall temperat_ire distribution, equation (27) is com-
bined with the solution for part i) taken from reference 5, which gives

t_ = __q°+ 1 - c q(x)

w _ c + tr,e + (SO)I+Z + Z -

_'_ere%/q is given by eq<_atio_(zg).

Pure-convection solution. - For pure convection_ all the heat added

at the wall is transferred to the gas. Hence_ the mean gas temperature

at any axial position can be found by integrating the wall heat flux
from the entrance of the tube to that location:

_0 X

The heat flux q(X) is substituted from equation (la), and the result

can be arranged in the dimensionless fo_wL for tg(X):

/oX St q )
tg(X) : tg_i + -_- dx (el)

From the definition of the convective heat-transfer coefficient_

q(x): h[Tw(x)-Tg(x)]

which can be arranged i_: the d;imensionless fo_

tw(x) = tg(_) +
1 q(_)
H { (32)

Substituting tg(X) from equation (Sl) gives the desired wall tempera-
_ure expression:

jox ]tw(X) = tg,i + _qq (x) + St q(x)dx (as)
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APPLICATION TO CHOPPED S!NUSOID_a3 HEAT FLUX

For the numerical exa;nples carried out herein the heat flux is as-

sumed to have a chopped siausoidal distribution that is often found in

nuclear-reactor applications. In this case_

q(x) = C sin[_(_ x +_)]+2_ (34a_

where C is % constant. The integrated average q is given by

This carl be substituted without difficulty into equation (18) and its

associated boundary conditions governing the combined radiation and

convection problem.

For pt_e convection the solution given by equation (33) becomes

+ £ Jsin _(_ + t)tw(X) tg,i

+ St (_ + 25) cos cos (5S

For the pure-radiation solution the constants CI and C2 in equa-

tion (29) are to be evaluated. Since the imposed wall heat flux is

symmetric about _/?_ and the reservoirs are both zero for the solution

in equation (29), this solution must be sy_mnetric about _/2; hence_

CI = O. To determine C2 use the boundary condition found by evaluating

i+
the integral equation (ii) st x : 0 w_oh H, tr,i, and tr, e equal to
zero :

_ qo({) %(0)q(°----!)+ _e -t{ dt - (56)

_len f(x) is substituted into equation (29) and the integration is

eemried out

- oin + CZ (57)
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This is substituted into equation (36), and after integrating the result

can be solved for the constant C2. This constant is inserted back into

equation (37) to obtain qo/_, which is then substituted into equa-

tion (30) to obtain the final wall temperature distribution for pure
radiation:

w r_e 1 + ; + Z - x + _-- + _2 sin Z + 25

2(2 + 85) _6 -e -_ cos
+ (e -2_ + 1)_ os Z + 25 _ + 26

2(_ + 25) (sin _5 e_2_ J.(l + 5)_][

\ Z + 26 + sin 7, + 25 aj
DIHENSIONLESS PAR_TERS

Before presenting some numerical examples_ it is worthwhile to dis-

c_ss tf'e independent parmneters that are involved and become familiar

with their range of numerical magnitudes:

(i) The parameter _ is the length-diameter ratio of the tube.

Cases are carried out in the range from _ : 5 to i00. Host of the re-

suits are given for Z : S0.

(2) The emissivity c of the internal tube surface varies in the

range from 1.0 for the black condition to 0.0i, which is a lower limit

for some highly polished metals. In previous work (ref. 3) most of the

results were found to be fairly insensitive to _; and_ hence_ except

for one example, the present solutions are carried out for the black
condition.

(3) Ttmee of the par_,_eters are dimensionless temperatures: tg,i ,

_r_i, and e" The dimensionless temperature variable is defined as

T(o/_) I/4 and thus depends not only on T but on the average wall heat

flux. Some t}gical values are:

q_
(sq ft)

50,000

1005000

100_000

t_ _@

dimensionle_o

2000 I 0.86

5000 1.09

SO00 1.81
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(4) The parameter St is the Stanton m_ber 4h/_0c p = 4Nu/RePr.

For tnrbulent flow in a tube a commonly known correlation is

Nu = 0.025 Re O'8PrO" 4 so that St = 0.098 Re -0" 2pr-O'C For gases at

elevated temperatures let Pr = O. 7S so St = O. 109/Re O" 2 Then some

values are :

Re St

104 O. OlYS

106 .0109

106 _<• O06S_

(S) The dimeusionless heat-transfer coefficient is given by

\o/ . Some typic_l values _%re:

10

40

50

10 S

105

ZxlO S

0.28

1.10

.82

+
(6) The chopped sine wall heat flux has the form sin

I +25'

w_ieh contains the par&mleter _ that can vary from zero to _. Prac-

t]eai val_es for nuclear reactors are in _ range from about O to I/4.

The maximm__ variation in q(x) is when 5 = 0 and will be the case

considered here• Results for other _ will lie between those in the

present report and those in reference S where q was uniform along the

tube (_ _ _).

DISCUSSION

With several independent parameters to consider, it is, not feasible

to exe_mine the wide variety of types of solutions in any detail. Several

typical examples are considered that will indicate the general behavior

of the w:,ll and gas temperatures. For some ranges of parameters the

combined radiation and convection solutions (these solutions will be

referred to as simply the combined solutions) become very close to the

results for radiation or convection alone; hence_ when these ranges are

defined, the solutions falling within them are easily determined from

the limiting c,'_ses.



18

The first pars_leter to be discussed is the effect of tube length.
This is shownin figure 2 where dimensionless wall and gas temperature
distributions a:_egiven for black tubes with various lengths from S to
i00 diameters. The wall heat flux has a one-half sine wave _'ariation;
that is, the parameter 5 is zero. Three groups of wall temperature
cT_ves are given: The solid curves _re the combinedconvection and
radiat:ion so!utions_ the dotted curves are for convecti<_n:done_ and

the dol-dash lines are for radiation alone. Typical values for St, H_

and tg,_ have been chosen. Tl_e reservoirs at the inlet _nd exit ends

of the tube have beeu assumed equal, respectively, to the inlet and exit

gas temperatures. As the limiting case of pure radiatioll is approached,

the convective heat transfer becomes very small and a neglisible quahtity

of heat is tra,usferred to the gas so that _ : t Hence for the_g_e g,i" '
pure radiation solutions_ both the exit and inlet reservoir temperatures

are set equal to tg,i.

Consider first the three curves for a short tt:_be, _ = S. The p_me-

convection curve is generally much higher than the plate-radiation c_'ve_

indicating that the wall heat flux can be dissipated more easily by

radiation to the cooler end reservoirs than by convection to the gas.

Since the radiation process is more efficient, the combined solution

follows the shape of the radiative distribution and is somewhat below

the radiation curve because of the additive convective effect. Since

q is zero at x = O, it follows from the relation q : L(T w - Tg) that

the pure-convection craves begin at tg_i. The combined solutions beg_n

at values higher than tg,i because radiation from the central part of

the t_bc imposes an additional heat load on the w'<!l near the tube inlet.

For a long duct (Z = i00) the situation is completely different.

Here the pure-radiation process leads to very high wall temperatures as

it is difficult for heat to be radiated from the central re_ion of a

long tube to the end reservoirs. The energy can be csrr:ied sway much

more easily by the flowing gas_ and as a result the wall temperatures

for the combined solutions are close to the pure-conwr_ction c_ve. For

tubes longer than i00 diameters, and for the parameters in figure 2, the

combined solutions would be so close to the pure-convection limit that

this limit would serve as an adequate approximation.

The lower part of figure Z shows the variation of gas temper:_t<me

along the tube as compared with the pure convective case. With 8 sinus-

oidal heat flux variation along the tube_ the gas temperature risers

slowly at first and then at a more rapid rate in the central part of the

tube where the heat addition reaches a maximum. For long tubes the gas

temperature begins to rise a little more rapidly than for _ihe pure-
convection result because of the additional heat radiated to thE_ wall

near the inlet. For short tubes the exit gas temperat<_re is considerably

below the pure-convection value because of radiation losses to the inlet
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and exit reservoirs. It is important to note that, although the maximtun
wall temperatuz'es have been reduced comparedwith pure convection_ the
_,,xit gas temperat_:_eshave _iso been reduced. For a length of SOdiame-
ters the peak temperature is decreased by Y percent while the exit gas
temperature has been reduced by 4 percent. Thus_ if the heat flux were
raised to yield the sameexit gas temperature_ the wall temperatures
would rise somewhat,snd the reduction in t._ maximumvalues would only
be about S percent.

Figure 2 has been restricted to black tubes, and the question
arises as to how the wall emissivity will influence the results. This
report is mainly interested iu lonc_t,_bes because of their greater
practical us_:. In tlLis case the sobrtions are strongly dominated by
convection end in most instancer: are fairly close to the convection
curw_s. Reduci_g the emissivity of tLc surface would be expected to de-
crease the radiation exchanges and hence movethe solutions tows_rdthe
convection curves. As a result_ for emissivities less than I_ the com-
bined selections should fall between the black ctmve and the pt_e-
convection euse. This is illustrated in figure S for a tube ZOdiameters
long. Even for a very small e of 0.01 it is found that the solution
is still close to the black c'_'ve. This is due to the multiple reflec-
tions inside the tube that tend to makethe tu%_eact like a black enclo-
sl:_e. Due to this insensitivity with @ and the fact that all the
curves for long tubes will lie in the relatively narrow range between
the black and prate-convection results, solutions are 6ive.u on the re-
maining figures only for the black case. Additional information on the
influence of c can be obtained by looking at the results for unifonn
heating in reference S.

Figur<_4 illustrates the effect of changing the Stanton mmber.

'r 7 /_ 0 2For tuz_bulent flow St is proportional L.) _/L_e " so an increase in

St is caused by a decrease in Reynolds _-___nber,which in turn would be

caused by a decreased mass-flow rate. This increases the temperat_'e

rise of the £as as it remains in the tub6 a longer time, and conse-

quently the wall temperatures are increased when St is made larger.

This causes larger radiation losses so that the exit gas temperature

ratio is decreased as sl_ovm in the lower part of' the figt_e. For St

smaller tha£ 0.01, radiation effects are reduced, and the solutions

wo,_:id approach the pure-convection limit more closely.

Figure S illustrates the influence of the dimensionless heat-

transfer coefficient H. b%en K : O.S, the wall temperattu_es fox" con-

vection alone are much lower than the pure-radiation m_rve_ indicating

that the impo.<:ed wall he_.t fl_x can be removed much mor_ e_sily %'y con-

vection. Conseque_nt!y, the solution is close to the pure-convection

curw_. As N is decrc_ased; the convect_c:,r, becomes ]_ass efi'cetiv,', and

the solk_tions move toward the prate-radiation result. For H = O.Z, the

solution is str_'}rlglyradiation dominated; and large quantities of energy
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are lost from the ends of the tube as evidenced by the lower exit g_s

temperature. For H greater than 0.8_ tile solutions could be p_'_fct_,d_

q:_ite well from the pum'e-eonvection case.

_{nen the inlet gas temperature is changed, the temperature low,]_ of

t.te entire tube is _'_itered. For low inlet temperat<_es the radiation

effects are suppressed; and_ as shown in figure G, when tg = O.S_ the

__;olut:i_orlis close to the p_re-convection result. For lower values of

t_o,_ radiation exchange can be neglected. _en tg_i : 6.0_ however;

radiation is appreciable and causes the wall temperature curve to be

rm_re uniform than for convection alone.

In some applications the ends of the tube will be exposed to envi-

ro_cnt temperatures other than the inlet or exit gas temperat<a_es. For

example, a tube could be exhausting to the very low tempcrat_re of outer

sp<_ce, or one end of the tube could be exposed to a high temperature

such as a combustion ehalnber. A few of these effects are illustrated in

fist<re 7. Figu_e 7(a) shows the effect of having an elevated reservoir

temperature at the exit end of the tube. The wall temperatures near the

exit are strongly imfl<_enced by the heat radiated into the tul_e_ an_! the

temperat<me at x = Z is raised close to the exit reservoir value.

Figlm_e 7(b) illustrates the result of raising both the inlet and exit

resel_voir temperatures so heat is now radiated into both ends of the

tube. The gas temperatures in figure 7(b) are always sbove the pure-

convection solution because of the additional heat that is radiated to

the walls and then transferred to the gas. Figure 7 demonstrates the

very great effect that the environment temperatures can have on the tube

w_] ! temperatures.

As indicated by the exit gas temperature, for most of the sample

cases given here there were net radiation losses from the end openings

<,'fthe tube. It is of interest to note how much of the imposed wall

11<_at flux is transferred to the gas in comparison with the individual

end losses. These quantities can be evaluated from the terms in the

}_eat balance equation (2,6)_ and results are given in table I_ which

list_: the heal radiated from each end of the tube and the heat convected

to tkc gas, these quantities being normalized with respect to the total

heat generation imposed at the tube wall. An interesting case at the

_ <<tom of table I is when the inlet reservoir is heated to tr, i = S.O_

:_s ir_ tills instance the heat gain (a heat gain appears as a negative

mu<ber) ]_y the wall :from incoming radiation is appreciable compared with

',_e specifie@ wall i_eating.
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CONCLUDING REMAA_KS

An analysis has been carried out to study combined radiation and

convection for transparent gas flowing in a tube with an arbitrary axial

distribution of imposed wall heat flux. The results were then special-

ized for a sinusoidal heat flux vsa_iation_ and several numerical examples

were computed to illustrate the effect of the independent parameters.

Most of the examples were carried out for tubes 50 diameters in length,

and only a few cases are shown for shorter tubes that are not as impor-

tant practically. The internal radiation tends to level out the wall

temperature distribution in the tube because of heat being radiated axi-

ally from the hot to cooler regions. If the outside environment temper-

ature is high_ large quantities of heat can be radiated into the tube

and cause large local increases in wall temperature.

There are a few final remarks that should be made with reference to

the analytical procedure. One of the most important assumptions was the

use of the separable kernel method which made it possible to convert the

governing integral equation into a differential equation. This method

was used previously in a paper dealing with specular reflections in a

uniformly heated tube (ref. 7) where it is compared with direct numerical

solutions of the integral equation. For tubes 20 diameters in length

the separable kernel gave wall temperatures about 5 percent too high_

whereas for short ducts the error was very small. This indicates that

for tubes 50 diameters long the pure-radiation curves are probably about

i0 percent too high. However, for long tubes convection generally be-
comes more dominant than radiation so an error in the radiation terms is

less important. It appears that the separable kernel method will only

introduce an inaccuracy of a few percent in the combined convection and

radiation solutions considered herein.

Another important assumption was the use of a constant convective

heat-transfer coefficient. In the thermal entrance region which, for

turbulent flow, extends over approximately the first I0 diameters of the

tube, the heat-transfer coefficient will be higher than in the fully

developed region. This will cause a larger convection effect near the

entrance of the tube than was accounted for in the analysis; and_ for the

first several di_aeters_ the solutions should be closer to the pure-

convection curves. Since the heat-transfer coefficient is very high at

the tube entrance_ the tube wall temperature at x = 0 would be close

to the inlet gas temperature. For most of the present numerical examples

this effect is not too significant because the imposed sinusoidal heating

decreases to zero at the tube entrance. With only a small heat input

near the tube entrance_ the wall temperatures are already close to the

gas temperature; and, hence, the magnitude of the heat-transfer coeffi-

cient is not as important in this region.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland_ Ohio, July 13, 1962
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T
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APPENDIX - SYMBOLS

surface area

specific he,mt of fluid

tube diameter

radiation configuration factor from a differential ring element

on tube wall to circular opening at tube end

dimensionless heat-transfer coefficient, _ \_/

convective heat-transfer coefficient

radiation configuration factor between differential ring elements
on inside of tube wall

thermal conductivity of gas

length of tube

dimensionless length, L/D

Nusselt number, hD/k

Prandtl number, Cp_/k

he:_t added per unit area at tube wall

integrated average q

total incoming radiation to surface per unit area

total outgoing radiation from surface per unit area

Reynolds ntmber, _Dp/_

Stanton number, 4h/_oCp = 4Nu/RePr

:_bsolute temperature

dimensionless absolute temperature, (a/_)i/4T

gas velocity

mean gas velocity



_S

X

X

£

P

0

Subscripts :

e exit of tube

g

i

r

axial length coordinate measured from tube entrance

dimensionless coordinate X/D

linear extrapolation distance in chopped sine heat flux distribution

emissivity of s_rface

viscosity of gas

length coordinate

dimerlsionless length_ R/D

debilityof gas (excepti_ eq. (_,)_here p is refleot_vity)

Stefan-Bolt 2n,=nnmconstant

gas

inlet of tube (except in qi)

reservoir or enviror_neut at end of tube

w internal s _rface of tube wsll
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